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The crust formation is analyzed as a problem of phase transformation with a random mode

of heat transfer across the interphase boundary. A model of the process based on statistical
testing is shown here.

The formation of a protective crust in an ore smelting furnaceisassociated with the optimum thermal
conditions and with a stable lining. In the furnace crucible there forms a melt whose temperature is de-
termined by the physicochemical properties of the charge. Under normal operating conditions there forms
along the inner wall a protective layer of solidified material, which prevents a chemical decomposition of
the furnace lining. The possibility of crust formation and its subsequent thickness at a given power level
of furnace operation will determine the optimum crucible dimensions [L].

The performance of ore smelting furnacesislargely affected by processes which make it difficult to
determine the thermophysical properties of a molten mags, Furthermore, results obtained by simulating
the thermal processes in furnaces of various capacities cannot be scaled up from low-power to high-power
apparatus.

In view of this, there arises the problem of devising a simulation method which would require the
least time and equipment for testing and the mathematical description. A model for determining the crust
thickness will be shown here which is based on statistical tests,

The model is shown schematically in Fig. 1. Electric power is supplied to the ore bath 1 in the
furnace through electrode 2; a constant temperature is maintained at the outer wall consisting of a metal
jacket 3 and a liner 4. The movement of the interphase boundary 5 is determined by the amount of heat
flowing from the bath to the side walls. The problem is to determine the thickness of erust 6 at various
power input levels. Crust formation is associated with a phase transformation in the liquid—solid system
and, therefore, its analysis ties in with the Stefan problem [2].

The thermal circuits may be represented as follows. The solid phase cousists of two layers: the
liner and the crystallizing melt. The thickness of the latter comprises the width of the zone separating the
wall from the interphase boundary. The thermophysical properties

= of the solid phase are functions of the coordinates and of the tempera-
J 6 /2 ! ture, while those of the liquid phase are unknown functions of the tem-
/ ' /1 / perature. The crust thickness is determined from the isotherm for a
gt ,1” — Ea temperature below the temperature of the interphase boundary, One
3 l ] — ] specifies boundary conditions of the third kind at the outside surface
; .'11‘ ' T — ] of the liner, and of the second kind along the solid surface in the upper
(KA “ — =+ — part of the bath,
5 ISR o] The mathematical model of the crust formation process can, in
1292 S this case, be described by the following system of equations:
4 .
Fig. 1. Schematic diagram of 6 @, 5 Toy(x, n) 22 — .—‘?-( A (5 4, T ﬂ)
ore bath in a smelting furnace. o 0x 0x

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 6, pp. 1112-1117, June, 1974. Original
article submitted June 14, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduc.ed,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

780



aT.
+ ——(% 5 5 T ) (v, e, )
0T, 5] aT, \ . 0 ¢ oT, °
T 0a (Ts) 2 = o [0y (T) =2 | =i —— | 2 (Ty) =2
ety = 2 (1 ) - (g T
v / s T, °
Tl (o 00 o, 2 e g0, DE (@
\ dx Ty
Te|0, f], ¥ =8, U
At the interphase boundary I" we have Ty = Ty:
. aT, . 9Ty | al
Ry |, 22 pp,
on p ©oonlp P at (3)

We note that mass transfer and chemical conversions not accounted for in Eq. (2) are rather signifi-
cant within region Q,. Furthermore, the conditions of heat transfer at the boundaries of the reaction zone
and the physical phenomena occurring within the reaction zone are not in all ore smelting processes suffi-
ciently understood yet. In view of this, one may regard the propagation of heat through region £, as a
random process and assume that the heat flows in a chaotic pattern. One may then consider all the heat
released in the volume underneath electrode 2 during a unit of time to become distributed over the nodes
of the computation grid which covers region Q..

A thermal flux element contained in point (x, y) at the time 7 + A7 is determined by the thermal fluxes
in the surrounding points at time 7:

afx, y, T A = plu(x - Ax, 3 D S ptu(x—Ax, g, 1)
TP g Ay, 1) P, y— Ay, 1), pE - pE =, (4
where pil and p:tz are the transient probabilities.
Equation (4) is the difference analog of the Einstein~Kolmogorov differential equation [3]
ou 1 D do*u 1 D du du . Ou
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The form of Eq. (5) is the same as the equation of heat conduction in a moving stream. Its coeffi-
cients Dy and Dy have the dimension of thermal diffusivity (m?/sec), while cx and cy have the dimension of
velocity (m/sec).

The physical meaning of Eq. (5) is that it describes the law of heat distribution in region 2, with u
being a function of the source density. Since it is necessary to determine the thermal flux transmitted
through the side walls, hence the boundary conditions will be written as

ulx, g, =1, w(x, g, 0 =0, (6)
In other words, the model described by Egs. (1) and (5) replaces now the model described by Eqs.
(1) and (2).

Thus, the solution of the problem consists of two stages: in the first stage we consider the heat dis-
tribution in the ore bath (region Q,) and determine the thermal flux QT transmitted across the interphase
boundary; in the second stage we solve Eq. (1) and determine the isotherm of the crust.

N
In order to determine the thermal flux QT =2 u(x, y, t), we replace Eq. (5) by its difference analog,
The bath volume underneath the electrode will be subdivided into a uniform grid of dimensions (k + 1)}(m + 1).
The entire thermal flux @, entering the bath is assumed to distribute over the grid nodes. With the phase-

transition boundary regarded as an absorbing shield, we apply the method of a random walk [4] to deter-

mine the number of points u(x, y, 7) which reach this shield after t steps and obtain
NT

N ) .
Qr=Q —A—}"—. = 2 u(x, . %) = (" -+ pH Q, (N

The probability that the thermal flux concentrated at some node (i, j) will reach the phaée-transition
boundary after t steps is given in Eq. (4), and this equation may be rewritten in a more convenient form

.‘”s”(i, D=pruw @1, ) e et i — 1, ) A o ) Pl 1) (8)
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(s denoting a discrete time interval) with the boundary conditions

wu®, =1, utk+1,)=1

. . (9
u(d, =0, u(i, m+1)=0,
where
(Axp* (Ag)?
— 4D, = 4D, 10
At * At v (10)
1 c 1
o= 4+ Ay, pR=— &+ —2L-A
P 4 — 4D, P 4 4Dy v ab
Analytic solutions to Eq. (8) with conditions (9) are known only for certain special cases, For this
‘reason, it would be appropriate to solve Eq. (8) by the Monte Carlo method [6].
Having determined the thermal flux passing through the side walls at different power levels M' and
M", one can rephrase condition (3) as follows:
al
Qr— Q= bp ol (12)
aT B -
A anl = = 20— Q... (13)

The transient probabilities in this statistical model are playing the role of similarity criteria. In
the physical sense they correspond to the Peclet number, Unlike in physical models, where the similarity
criteria are constant, here the transient probabilities will fluctuate from 0 to 1, Their values can be de-
termined when thermal equilibrium in the test furnace ceases to prevail, whereupon cy and cy are calcu-
lated according to formulas (11). The initial location of the interphase boundary in the test apparatus is
also determined then.,

The process is now scaled up according to simple rules: when the scale factor is appropriately
multiplied, then the grid step changes and the number of steps (process time) necessary for a point to
reach the state of heat absorption also changes, but quadratically according to (10).

As has been said earlier, the second stage is solving Eq. (1) with condition (13) stipulated at the
interphase boundary I'. According to the procedure adopted for calculating the crust, Eq. (1) can be solved
by the Monte Carlo method, the gist of which is to represent the difference scheme for the differential equa-
tion as a Markov chain with a finite number of states. Problems associated with the application of the
Monte Carlo method to heat conduction have already been discussed in [7, 8].

Another good reason for using the method of statistical tests is that the values given for the thermo-
physical properties of materials are, as a rule, widely spread and no simple analytic relation between
these properties and the temperature is known. With the use of statistical methods it is convenient to
simultaneously simulate the thermophysical properties of the materials involved. We will briefly describe
here the method of solving Eq. (1), which has already been described more thoroughly in {9]. Since the heat
conducting medium is heterogeneous and the thermal conductivities are functions of the temperature, hence
each zone is subdivided into a uniform grid. The values of thermal conductivity between node points are
generated according to the rule of random sampling. It is necessary here to specify the range of possible
values for each zone.

Having calculated the temperatures at the grid nodes n times, each time anew generating the values
of thermal conductivity between nodes, one now determines the mean temperature at node (i, j) according
to the formula

n
2 T:.i

Toj=—"=— (14)
where Tr denotes the temperature at node (i, j) based on the r-th sampling of thermal conductivity values.

The temperature at node i, j)is calculated accordmg to the formula

S —2
T Tz+1 i L] + Tia Mg+ Ti ,+1 A2 L Ti i A
Ly —

A+

= - ) (15)
i+ A+ A 4 A
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Fig. 2. Crust profile at various

power levels,

02 =

where A ! denotes the2 thermal conductivity between nodes (i, j)
and (i £ 1 j) while 7\1 ,j denotes the thermal conductivity between
nodes (i, j) and @, j =1).

Formula (15) may be interpreted as representing a random
walk among grid nodes, with the peripheral nodes in the state of
absorption [9]. The transient probabilities in this case are de-
termined according to the formula

}\.im
p?-:}rz - 5 . (16)
PR
r=1

The fact that this is a Markov process ensures its stability
[10] and the convergence of the approximate solution to the exact
one,

For simulating the crust formation process by the method
of statistical tests, one must know the initial location of the inter-
phase boundary in the model and the range of possible values of
thermal conductivities. The accuracy of the model depends on the
dispersion of temperature values at the grid nodes. For estimat-
ing purposes, the maximum dispersion is

37— T
= '
n—1 ' an

max

With more samplings n, of course, the accuracy improves proportionally to vn.

It serves no useful purpose to sample more than 30 times for engineering problems when an accuracy
of 15-20% is required, especially since doing so would lengthen the computer time considerably.

A crust profile within the crystallization zoune is shown in Fig. 2, based on this simulation procedure.
It has been assumed here that the interphase boundary is also the surface of maximum electric current
density, also that as much heat is transmitted by conduction as by convection. All results are given here
in relative units.

NOTATION

is the temperature in the crystallization zone of a melt;

is the distance from the center of the electrode to the interphase boundary;

are the thermal fluxes transmitted, per unit time, from the bath across the interphase
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